(1(a)) We want to solve

$$1 + \frac{dy}{dx} e^{3x} = 0$$

We use the "informal method". See the
class notes if you want to firmalize this
without differentials.
We have
 $\frac{dy}{dx} e^{3x} = -1$
So,
 $dy = -e^{-3x} dx$
Thus,
 $\int 1 \cdot dy = -\int e^{-3x} dx$
So,
 $y = -(-\frac{1}{3}e^{-3x}) + C$
Thus,
 $y = \frac{1}{3}e^{-3x} + C$
where C is any constant
Note that this function is defined on $I = (-\infty, \infty)$

$$\begin{array}{l} \textcircledleft{0}(b) & \text{In part (a) we saw that} \\ y = \frac{1}{3}e^{-3x} + C \\ \text{is a solution to} \\ 1 + \frac{dy}{dx}e^{3x} = 0 \\ \end{tabular} \\ We also Want y(o) = -5. \\ \end{tabular} \\ Plugging in x = 0, y = -5 into the above \\ solution we have \\ -5 = \frac{1}{3}e^{-3(o)} + C \\ \end{tabular} \\ \\ \text{Soj} \\ -5 = \frac{1}{3} + C \end{array}$$

Thus,

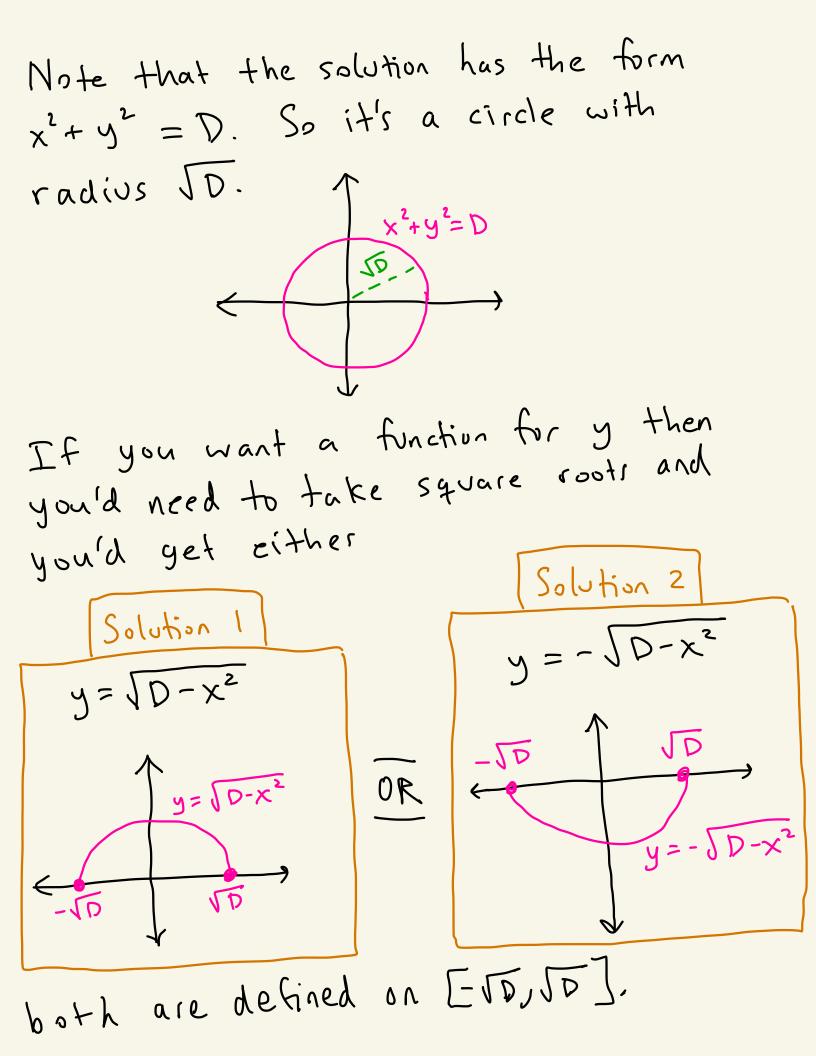
$$C = -5 - \frac{15}{3} = -\frac{16}{3} = -\frac{16}{3}$$

So,

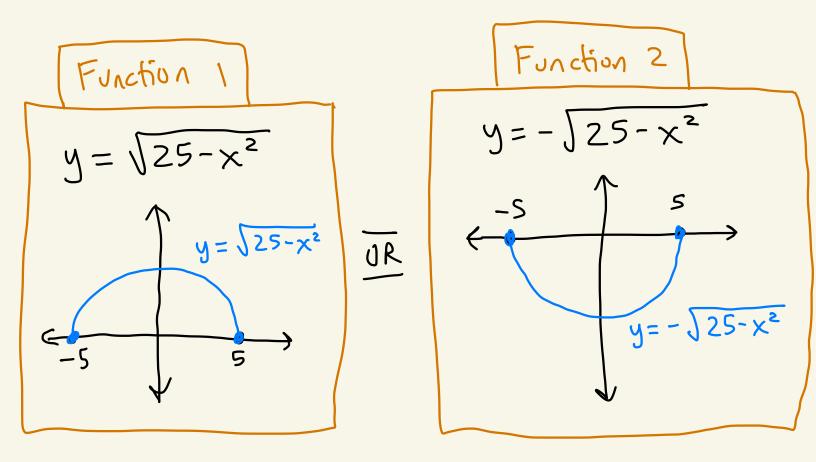
$$y = \frac{1}{3}e^{-3x} - \frac{16}{3}$$
is a solution to

$$1 + \frac{dy}{dx}e^{3x} = 0, \quad y(0) = -5.$$

$$(1)(c) Want to solve $\frac{dy}{dx} = -\frac{x}{y}$
We will use the "informal method" with
differentials. See the class notes if you
want to use a more formal method without
differentials.
We have that
 $\frac{dy}{dx} = -\frac{x}{y}$
Separating the x'r and y'r gives
 $y dy = -xdx$
Thus,
 $\int y dy = -\int x dx$
So,
 $\frac{y^2}{z} = -\frac{x^2}{2} + C$
Thus,
 $y^2 = -x^2 + 2C$
So, $\frac{x^2 + y^2}{z} = D$
where $D = 2C$ is any constant
 $\int y dy = \int x dx$$$



()(d) We saw in part (c) that a solution to
$\frac{dy}{dx} = -\frac{x}{y}$
is $x^2 + y^2 = D$. x = 4, y = 3 into our
We want $y(4)=3$. Plug in $x=4$, $y=3$ into our solution to get:
$4^{2} + 3^{2} = D$
So,
D=25 Thus, an implicit solution to
$\frac{dy}{dx} = -\frac{x}{y}, y(4) = 3$
is $x^2 + y^2 = 25$ $x^2 + y^2 = 25$ 5
If you solve for
y then you would get two functions Z



Both of these functions are defined on I = [-5,5]. However only function 1 satisfier y(4) = 3Thus, an answer to the problem is $y = \sqrt{25 - x^2}$

$$\begin{array}{l} \textcircledleft (e) & We want to solve \\ & \chi e^{y} \sin(x) - y \frac{dy}{dx} = 0 \\ \\ We use the "informal method". See the \\ elass notes if you want to formalize this \\ without differentials. \\ \\ We have \\ & y \frac{dy}{dx} = x e^{-y} \sin(x) \\ \\ \\ So_{y} e^{y} dy = \chi sin(x) dx \\ \\ \\ Thus, \\ & \int y e^{y} dy = \int s \sin(x) dx \\ \\ \\ Note: \\ & \int y e^{y} dy = y e^{y} - \int e^{y} dy = y e^{y} - e^{y} + C_{1} \\ \hline & u = y \quad du = dy \\ dv = e^{y} \quad v = e^{y} \\ \\ & \int u du = dy \\ dv = e^{y} \quad v = e^{y} \\ \\ \\ \\ \end{bmatrix} x \sin(x) dx = -x \cos(x) + S \cos(x) dx = -x \cos(x) + \sin(x) + C \\ \hline & u = x \quad du = dx \\ dv = sin(x) \quad v = - \cos(x) \end{aligned}$$

Thus we get $ye'-e'=-x\cos(x)+\sin(x)+C$ constants of integration C_1, C_2 combined $C = C_2 - C_1$ Thus we get an implicit equation relating y and x but we can't really solve for y.

(i)(f) In part(e) we saw that

$$ye'-e^y = -x\cos(x) + \sin(x) + C$$

gave an implicit solution to
 $xe^y \sin(x) - y\frac{dy}{dx} = 0$

We also want
$$y(o) = 1$$
.
Plug in $x = 0, y = 1$ into our solution to get
 $1 \cdot e' - e' = -0 \cdot \cos(o) + \sin(o) + C$

Thus,

$$ye'-e' = -x \cos(x) + \sin(x)$$

gives an implicit solution to
 $xe^{y}\sin(x) - y\frac{dy}{dx} = 0$, $y(0) = 1$

$$\begin{array}{l} \textcircledleft{0}(g) & \mbox{We want to solve} \\ & \mbox{Xy}' = 4 \mbox{y} \\ & \mbox{We use the "informal method". See the elass notes if you want to formalize this without differentials. We have \\ & \mbox{X} \cdot \frac{dy}{dx} = 4 \mbox{y} \\ & \mbox{We have} \\ & \mbox{X} \cdot \frac{dy}{dx} = 4 \mbox{y} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dx} = \frac{dx}{x} \\ & \mbox{So,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dy}{dy} = \frac{dx}{x} \\ & \mbox{Thus,} \\ & \mbox{d} \frac{dx}{dy} = \frac{dx}{dx} \\ & \mbox{d} \frac{dx}{dy} = \frac{dx}{dy} \\ & \mbox{d} \frac{dx}{dy} = \frac{dx}{dx} \\ & \mbox{d} \frac{dx}{dy} = \frac{dx}{dx} \\ & \mbox{d} \frac{dx}{dy} = \frac{dx}{dx} \\ & \mbox{d} \frac{dx}{dy} = \frac{$$

So,

$$e^{\ln|y|} = e^{\ln(|x|^4) + 4C} \in A\ln(B) = \ln(B^A)$$

Thus,

$$e^{\ln|y|} = e^{\ln(|x|^4)} \cdot e^{\ln(A)}$$

 $e^{\ln(A)} = A$

$$|y| = |x|^{4} \cdot e^{4c}$$

Thus,

$$|y| = D \cdot |x|^4$$

 $|y| = D \cdot |x|^4$
where $D = e^{4^\circ} > D$ is a positive constant.

So,

$$y = \pm D \cdot x^{4}$$

Thus,
 $y = A \cdot x^{4}$
where A is any constant.
This solution is defined
on $I = (-\infty, \infty)$

(1)(h) In part (9) we saw that

$$y = A x^4$$
 is a solution to $xy' = 4y$.
To get $y(1) = 5$ we plug $x = 1, y = 5$ into
Our solution to get
 $5 = A \cdot (1)^4$
So,
 $A = 5$
Thus,
 $y = 5x^4$
solves
 $xy' = 4y, y(1) = 5$